Fast Image Tagging
نویسندگان
چکیده
Automatic image annotation is a difficult and highly relevant machine learning task. Recent advances have significantly improved the state-of-the-art in retrieval accuracy with algorithms based on nearest neighbor classification in carefully learned metric spaces. But this comes at a price of increased computational complexity during training and testing. We propose FastTag, a novel algorithm that achieves comparable results with two simple linear mappings that are co-regularized in a joint convex loss function. The loss function can be efficiently optimized in closed form updates, which allows us to incorporate a large number of image descriptors cheaply. On several standard real-world benchmark data sets, we demonstrate that FastTag matches the current state-of-the-art in tagging quality, yet reduces the training and testing times by several orders of magnitude and has lower asymptotic complexity.
منابع مشابه
Binary Codes Embedding for Fast Image Tagging with Incomplete Labels
Tags have been popularly utilized for better annotating, organizing and searching for desirable images. Image tagging is the problem of automatically assigning tags to images. One major challenge for image tagging is that the existing/training labels associated with image examples might be incomplete and noisy. Valuable prior work has focused on improving the accuracy of the assigned tags, but ...
متن کاملSEIMCHA: a new semantic image CAPTCHA using geometric transformations
As protection of web applications are getting more and more important every day, CAPTCHAs are facing booming attention both by users and designers. Nowadays, it is well accepted that using visual concepts enhance security and usability of CAPTCHAs. There exist few major different ideas for designing image CAPTCHAs. Some methods apply a set of modifications such as rotations to the original imag...
متن کاملSupplementary Material for Fast Zero-Shot Image Tagging
We present another set of experiments conducted on the widely used IAPRTC-12 [6] dataset. We use the same tag annotation and image training-test split as described in [7] for our experiments. There are 291 unique tags and 19627 images in IAPRTC12. The dataset is split to 17341 training images and 2286 testing images. We further separate 15% from the training images as our validation set. Table ...
متن کاملFast Imaging of Cardiac Strain Using Partial k-Space HARP in Mice
Characterization of myocardial deformation in genetically manipulated mouse models with MR tagging provides new opportunities for elucidating the molecular mechanisms of cardiac function. However, tagging on murine hearts presents additional challenge because of the requirement for high tagging and imaging resolution. The high heart rate of mice renders EPI or segmented k-space sampling impract...
متن کاملUltra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU
Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...
متن کاملJoint Word Segmentation and POS Tagging Using a Single Perceptron
For Chinese POS tagging, word segmentation is a preliminary step. To avoid error propagation and improve segmentation by utilizing POS information, segmentation and tagging can be performed simultaneously. A challenge for this joint approach is the large combined search space, which makes efficient decoding very hard. Recent research has explored the integration of segmentation and POS tagging,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013